Rate Allocation for Multi-User Video Streaming over Heterogeneous Access Networks

Xiaoqing Zhu, Piyush Agrawal, Jatinder Pal Singh, Tansu Alpcan, and Bernd Girod

Stanford University Indian Institute of Technology, Kanpur Deutsche Telekom Laboratories

Multiple Access Network

How to have efficient utilization of all networks simultaneously?

Flows Middleware Internet 802.11x LAN/WAN
Outline

- Network and Video model
- Rate allocation schemes
 - Media-aware allocation
 - H∞-optimal allocation
 - Additive Increase Multiplicative Decrease (AIMD)-based heuristics
- Performance evaluation
- Video demo

Network Model
Video Distortion Model

![Graph showing Video Distortion Model]

- Late loss due to congestion
- \(D_{enc} = D_0 + \frac{\theta}{R - R_0} \)
- \(D_{loss} = \kappa P_{loss} \)
- \(D_{dec} = D_{enc} + D_{loss} \)

Media-Aware Allocation

- **Optimization objective:**

 \[
 \min_{R} \sum_{s} D_{dec}^t \quad \text{Ensure Unique solution}
 \]

 \[
 s.t. \quad R^t_s = \rho_n R^t
 \]

 \[
 \rho_n = \frac{ABR_n^t}{\sum_n ABR_n^t} \quad \text{Balanced Utilization}
 \]

- **Distributed approximation:**

 \[
 \min_{R^s} D^s(R^s) + \sum_n \kappa' P_{loss}(\rho_n R^s)
 \]

 Contribution to video distortion

 Contribution to congestion
H$^\infty$-Optimal Allocation

- Linear state-space system
- Bandwidth variations - unknown disturbances
- Worst-case optimization
- Decoupled control of streams
- No RTT, DR characteristics

[Alpcan et al. 2007]

AIMD-Based Heuristics

- Reactive to congestion

![Diagram](attachment:image.png)

- **Greedy AIMD**: choose network with maximum instantaneous ABR
- **Rate Proportional (RP) AIMD**: allocation in proportion to average ABR
Simulation Methodology

Good quality

Bad quality

Aggregate Video Rate over Ethernet

30% background traffic, 300ms playout deadline
Allocated Video Rate

Media-Aware

H∞-Optimal

AIMD Rate Proportional

Packet Loss Ratio and Delay

Packet Loss Ratio (%)

Delay (ms)

30% background traffic, 300ms playout deadline
Received Video Quality

Network Utilization
Harbor

<table>
<thead>
<tr>
<th>Media-Aware</th>
<th>H^∞-Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy AIMD</td>
<td>Rate Proportional AIMD</td>
</tr>
</tbody>
</table>
Conclusions

- Framework for *simultaneous* rate control and allocation, adaptive to network and video
- Evaluation & comparison of 4 diverse schemes with HD video streams
- Benefits of proactive rate allocation:
 - Less fluctuation in rate
 - Reduced packet loss and delay
 - Improved received video quality
- Benefits of media-aware allocation:
 - More balanced video quality among the streams

Implications

- Quality of service (QoS) provisioning for rate-demanding and delay-sensitive media applications
- Convergence of multiple networking technologies
- Seamless soft handover for mobile devices