Region-of-Interest Prediction for Interactively Streaming Regions of High Resolution Video

EE392J Group Project Report
by
Aditya Mavlankar and David Varodayan
Information Systems Laboratory, Stanford University, Stanford, CA 94305
{maditya, varodayan}@stanford.edu

1 Introduction

High resolution digital imaging sensors are becoming more widespread. In addition, high spatial resolution videos can also be stitched from views from multiple cameras, as implemented by Hewlett-Packard in their video conferencing product called Halo [1]. However, challenges in delivering this high resolution content to the client are posed by the limited resolution of display panels and/or limited bit-rate for communications. Imagine that there is a client who is limited by one of these factors and is requesting the server to stream a high spatial resolution video. One approach would be to stream a spatially downsampled version of the entire video scene to suit the client’s display window resolution or bit-rate. However, with this approach, the client might not be able to watch a local region-of-interest (ROI) in the highest captured resolution. We propose a video delivery system which enables virtual pan/tilt/zoom functionality during the streaming session such that the server can adapt and stream only those regions of the video content that are desired at that time at the client’s end.

We have developed a user interface with real-time interaction for ROI selection while watching the video sequence. This has been developed using OpenGL [2]. As shown in Fig. 1, the display screen at the client’s side consists of two areas:

- The first area displays a downsampled version of the entire scene. We call this the overview display area. It is b_w pixels wide and b_h pixels tall.

- The second area displays the client’s ROI. We call this the ROI display area. It is d_w pixels wide and d_h pixels tall.

The zoom factor can be controlled with the scroll of the mouse. For any zoom factor, the ROI can be moved around by keeping the left mouse-button pressed and moving the mouse. As shown in Fig. 1, the location of the ROI is depicted in the overview display area by overlaying a corresponding rectangle on the video. The color and size of the rectangle vary according to the zoom factor.

2 Problem Description

Notice that in our system, the client indicates his ROI and the desired spatial resolution (zoom factor) real-time to the server. The server then reacts to this by sending relevant video data which is decoded and displayed at the client’s side. The server should be able to react to the client’s changing ROI with as little latency as possible. However, streaming over a best-effort packet-switched network implies delay, delay jitter as well as loss of packets. To keep the complexity low, we design the system to work for a known value of the worst-case delay, assuming that there is no packet loss on the network. Since the overview video always displays the entire scene, we allow some start-up delay and always send some number of frames of the overview video ahead of time. We can choose the size of the buffer such that it enables us to always deliver a minimum number of frames of the overview video in advance despite the worst-case delay of the network.

We assume that the client renders the requested ROI while displaying the immediately next frame after obtaining the ROI location information from the mouse; i.e., the worst-case latency for the interactive part of the system is equal to one frame-interval. Meeting the display deadline for the ROI display
area is challenging since the ROI is not known beforehand and is being decided by the user real-time. As one possible solution, we propose to predict the ROI of the user beforehand and use this to pro-actively pre-fetch those regions from the server. Specifically, we are trying to solve the following two problems in this project:

- **Manual mode:** Predict the user’s ROI \(d\) frame-intervals ahead of time. Note that the user continues to indicate his choice of the ROI in this mode.
- **Tracking mode:** The user right-clicks on an object in the ROI. The aim is to track this object automatically in order to render it within the ROI till the user switches this mode off.

2.1 Manual mode

Predicting the future ROI could be done by extrapolating the mouse moves observed until the current time instant. Ramanathan used a simple autoregressive moving average (ARMA) model for predicting the future viewpoint of the user in his work on interactive streaming of lightfields \[3\]. Kurutepe et al. used a more advanced linear predictor, namely, the Kalman filter to predict the future viewpoint for interactive 3DTV \[4\], \[5\]. However, all these approaches are agnostic of the video content itself. In this project, we investigate possible improvement of the ROI prediction by processing the frames from the overview video which are already present in the client’s buffer. Notice that the motion estimated through the processing of the buffered overview frames can also be combined with the observations of mouse moves to predict the ROI better.

If the wrong regions are pre-fetched then the user’s desired ROI can still be rendered by interpolating the colocated ROI from the overview video. The quality of the rendered ROI would be lower in this case. Assuming this concealment scheme, we can evaluate the impact of the prediction objectively by computing the mean distortion in the rendered ROI with respect to the ROI rendered from the original video sequence. Note that in this project, we do not compress the high resolution layers of the video and also simplify the computation of the distortion even further; the distortion due to error concealment is computed by comparing against the ROI rendered in case of perfect ROI prediction as a reference. The overview video, also called as base layer, is compressed using H.264/AVC and the reconstructed signal is upsampled for error concealment.
Figure 2: Problem description: Streaming over a realistic network entails delay, delay jitter and packet loss. Some number of overview video frames are always delivered beforehand to the client. The ROI is predicted at the client’s end at least one roundtrip time in advance and the appropriate ROI pixels are pro-actively pre-fetched.

2.2 Tracking mode

Note that in this mode, we are allowed to shape the ROI trajectory at the client’s side. Hence we do not need to calculate the distortion-based metric as described above. We generate videos which show the automatic tracking of objects. We also show videos in which a human operator tracks the same objects in the manual mode as described above.

3 Description of Algorithms

The common objective of our various algorithms is to predict the user’s ROI \(d\) frames ahead of the currently displayed frame \(n\). Notice that requires a 3D prediction in two spatial dimensions and one zoom dimension. As discussed in the previous section, there are two modes of operation. In the manual mode the algorithms may process the user’s ROI trajectory history up to the currently displayed frame \(n\). In the tracking mode, this source of information does not exist. The novelty of our work is that in both modes the buffered overview frames (including \(n\) to \(n+d\)) are available at the client, as shown in Fig. 3. This means our algorithms may exploit the motion information in those frames to assist the ROI prediction.

3.1 Manual Mode Algorithms

3.1.1 Autoregressive Moving Average (ARMA) Model Predictor

We first adapt the straightforward ARMA trajectory prediction algorithm of [3] that is agnostic of the video content. This provides a framework for extrapolating the spatial co-ordinates of the ROI. Suppose, in the frame of reference of the overview frame, the spatial co-ordinates of the ROI trajectory are given by \(p_t = (x_t, y_t)\) for \(t = 0, 1, \ldots, n\). Then, we recursively estimate the velocity \(v_n\) according to

\[
v_t = \alpha(p_t - p_{t-1}) + (1 - \alpha)v_{t-1}.
\]

The parameter \(\alpha\) is used to trade off responsiveness to trajectory changes and smoothness of the overall trajectory; we follow [3] and choose \(\alpha = 0.5\). The spatial co-ordinates \(p_{n+d} = (x_{n+d}, y_{n+d})\) of the ROI
Currently displayed

Currently pre-fetched

Currently available over-view frames in buffer

Currently used overview frames for ROI prediction and pre-fetching

Figure 3: Timeline: The ROI is predicted \(d \) frame-intervals in advance. There are \(b \) buffered overview video frames up to frame \((n + d + a)\) available. A subset of these \(b \) frames are processed in order to better predict the user’s ROI. If the manual mode is switched on then the mouse translations are known till time instant \(n \). In the tracking mode, the user does not indicate the ROI explicitly through the mouse.

At frame \(n + d \) are predicted as

\[p_{n+d} = p_{n} + dv_{n}, \tag{2} \]

suitably cropped if they happen to veer off the extent of the overview frame. The zoom co-ordinate of the ROI cannot be predicted in this way because our rendering system does not allow continuous zoom. Since there are only a small number of discrete zoom levels, we choose to predict the zoom \(z_{n+d} \) at frame \(n + d \) as the observed zoom \(z_{n} \) at frame \(n \).

3.1.2 Kanade-Lucas-Tomasi (KLT) Feature Tracker Predictor

The second algorithm we consider for the manual mode of operation does exploit the motion information in the buffered overview video frames. As shown in the processing flowchart in Fig. 3, we first apply the Kanade-Lucas-Tomasi (KLT) feature tracker \(^6\) to perform optical flow estimation on the buffered overview video frames. This yields the trajectories of large (but limited) number of feature points from frame \(n \) to frame \(n + d \). The trajectory predictor then incorporates these feature trajectories into the ROI prediction for frame \(n + d \).

We use an open implementation of the KLT feature tracker \(^7\). At its core, this software solves the Lucas-Kanade equation by inverting a so-called gradient coefficient matrix \(G \) for each feature window. For a window of pixels \(W \) in an image \(I \), the gradient coefficient matrix is

\[G = \int_{W} (gg^{T}w)dx\,dy, \tag{3} \]

where gradient \(g = (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}) \) and \(w \) is a weighting function over the window \(W \). Among several feature windows, the Lucas-Kanade equation is solved with greatest confidence for those whose matrix \(G \) is furthest from singular. In particular, if both eigenvalues of \(G \) are large, the feature window contains variation in two direction, making it a corner or some other texture. This suggests the criterion for the ranking of feature windows in terms of their suitability for tracking: descending order of minimum eigenvalue of \(G \).
In our application, the KLT feature tracker begins by analyzing frame n and selecting a specified number of the most suitable-to-track feature windows according to this condition. Then it solves the Lucas-Kanade equation for each selected window in each subsequent frame up to frame $n + d$. Each solution involves an iterative Newton-Raphson method performed in a multiresolution pyramid to search efficiently over relatively large displacements. Figs. 5 and 6 show the features tracked from frames 250 to 259 of the Tractor and Sunflower sequences, respectively. Note that most (but not all) feature trajectories are propagated to the end of the buffer.

It is these feature trajectories that are exploited to predict the user’s ROI at frame $n + d$. Among the features that survive from frames n to $n + d$, the trajectory predictor finds the one nearest the center of the ROI in frame n. It then predicts spatial co-ordinates of the ROI to center that feature in frame $n + d$. As in the ARMA model predictor, the zoom z_{n+d} is predicted as the zoom z_n. In essence, this predictor follows and centers the KLT feature nearest the center of the ROI.
3.2 Tracking Mode Algorithms

Algorithms for the tracking mode differ from those for manual mode in two significant ways. Firstly, these algorithms cannot expect ongoing ROI information as input from the user. Instead a single click on a past frame indicates which object to track in the scene. This rules out predictors that are agnostic of the video content, like the one based on the ARMA model. Secondly, the predicted ROI trajectory in tracking mode is actually presented to the user. This imposes a smoothness requirement on the ROI for pleasant visual experience.

3.2.1 Kanade-Lucas-Tomasi (KLT) Feature Tracker Predictor

Just as for the manual mode, we employ the KLT feature tracker to extract motion information from the buffered overview frames. In the absence of ongoing ROI information from the user, we propose two distinct ROI trajectory predictors, a centering predictor and a stabilizing predictor. Then we combine them as a blended predictor. All these predictors begin by identifying the feature nearest the user’s initial click in the frame in which the click was made. Then they follow that feature trajectory into future frames.

The centering predictor chooses the spatial co-ordinates of the predicted ROI to center the feature trajectory. Whenever the feature being followed disappears during propagation, this predictor starts following the surviving feature nearest to the one that disappeared. It continues to center the new feature trajectory within the ROI window. This centering strategy introduces jerkiness into the predicted ROI trajectory each time the feature being followed disappears.

We seek to mitigate this effect with the stabilizing predictor. Once again the predictor follows a feature into future frames, but now it selects the spatial co-ordinates of the predicted ROI to keep the feature in the same location with respect to the ROI. As in the centering predictor, should a feature disappear, this predictor begins to follow the surviving feature nearest to the one that disappeared. But it now keeps the new feature where it was found in the ROI. The stabilizing predictor is designed to create very smooth trajectories but runs the risk of drifting away from the object selected by the user.

To combine the advantages of the centering and stabilizing predictors, we blend their predictions according to a fixed ratio. Similar to the α for the ARMA model predictor, this ratio trades off the blended predictor’s responsiveness to motion cues and its trajectory smoothness.

For each of these three predictors, the predicted spatial co-ordinates of the ROI are cropped if they veer off the extent of the overview frame. Also, the zoom z_{n+d} is predicted as the observed zoom z_n.

3.2.2 H.264 Motion Vectors Predictor

The client always receives some encoded frames of the overview video in advance. Included in the coded representation are the motion vectors which attempt to describe motion from frame to frame. In the tracking mode, we use these motion vectors to propagate the pixel at the point which the user indicates at the beginning of the tracking mode. The pre-fetched and rendered ROI is centered around this pixel and the user is still allowed to change the resolution through zoom operations.

Imagine there is a pixel in frame n, i.e., P_n, which we want to propagate to the future frames. The simple approach is to choose a pixel in frame $(n+1)$, i.e., P_{n+1}, which is connected via its motion vector...
to the given pixel P_n. We refer to this as the first approach. This simple approach is not robust enough and the pixel might drift out of the object that needs to be tracked.

In order to make the above approach robust, we first determine the pixels in frame $(n+1)$ connected to the four nearest neighbors of P_n. This is shown in Fig. 7. Out of these five pixels in frame $(n+1)$, we choose one pixel which is then propagated forward in the future frames. For choosing one out of these five pixels we tried two metrics:

- Choose that pixel which minimizes the sum of the squared distances to the remaining four pixels in frame $n+1$.
- Choose that pixel which has the minimum squared difference in intensity value compared to P_n.

We found that the second metric is more robust for the test trajectories. This algorithm is referred to as the second approach below.

4 Results

We captured ROI trajectories for three video sequences with the highest resolution of 1920x1088 and 3 zoom factors and a fourth video sequence with the highest resolution of 3584x512 and 2 zoom factors. The ROI display area was 480x272 for the first three sequences and 480x256 for the fourth. The overview videos with a resolution of 480x272 for the first three sequences and that for the fourth video sequence with a resolution of 896x128 were encoded using H.264/AVC.

4.1 Manual Mode Results

Figure 11 shows the performance of the ARMA trajectory prediction. It plots the distortion per rendered pixel of the ROI as a function of d, the number of frames in advance for which we predict the ROI. We have not used any compression scheme for the higher resolution video signals and we assume that if the ROI is perfectly predicted then the mean distortion is zero. Hence, the distortion shown in Fig. 11 is calculated by comparing against the ROI rendered in case of perfect ROI prediction as a reference.

4.2 Tracking Mode Results

Towards the proposed trajectory prediction scheme, we have used the Kanade-Lucas-Tomasi feature tracker on buffers of $b = 10, a = 0$ reconstructed low resolution frames. We begin tracking 300 features from the first frame in the buffer. Fig. 8 shows the features tracked from frame 250 of the Sunflower sequence to frame 259. At frame 259, only 171 of the original 300 features survive. Significantly, the 4 features on the bee’s body are successfully propagated through all 10 frames.
Appendix: distribution of work

David

- Coding of baseline ROI prediction scheme based on ARMA model
- Application and tuning of Kanade-Lucas-Tomasi feature tracker

Aditya

- Encoded overview video sequences using H.264/AVC
- Captured ROI trajectories which involve both manual mode and tracking mode
- Wrote program to evaluate the distortion per rendered pixel, given the original ROI trajectory and the predicted ROI trajectory and the sequence resolution and zoom factors
- Wrote code for generating video outputs in order to visualize the results of implemented algorithms

References

Figure 8: Tracking using motion vectors of the overview video for the Tractor sequence 600 frames. The tracked point is highlighted for better visibility. The result of the first approach is shown on the left and the result of the second approach is shown on the right.
Figure 9: Tracking using motion vectors of the overview video for the *Cardgame* sequence 300 frames. The tracked point is highlighted for better visibility. The second approach for tracking is employed.
Figure 10: Tracking using motion vectors of the overview video for the Sunflower sequence 500 frames and the Tractor sequence 600 frames. The tracked point is highlighted for better visibility. The second approach for tracking is employed.
Figure 11: Distortion per rendered pixel for Tractor sequence 600 frames. The ROI prediction is done using an autoregressive moving average (ARMA) predictor. Trajectory 1 can be roughly described as an attempt to track the entire tractor. Trajectory 2 can be described as an attempt to track the tools attached at the back of the tractor.